Structure-Preserving Function Approximation via Convex Optimization
نویسندگان
چکیده
منابع مشابه
Bounding Iterated Function Systems via Convex Optimization
We present an algorithm to construct a bounding polyhedron for an affine Iterated Function System (IFS). Our algorithm expresses the IFS-bounding problem as a set of linear constraints on a linear objective function, which can then be solved via standard techniques for linear convex optimization. As such, our algorithm is guaranteed to find the optimum recursively instantiable bounding volume, ...
متن کاملGreedy approximation in convex optimization
We study sparse approximate solutions to convex optimization problems. It is known that in many engineering applications researchers are interested in an approximate solution of an optimization problem as a linear combination of elements from a given system of elements. There is an increasing interest in building such sparse approximate solutions using different greedy-type algorithms. The prob...
متن کاملNondifferentiable Optimization via Approximation*
Optimization problems with nondifferentiable cost functionals, particularly minimax problems, have received considerable attention recently since they arise naturally in a variety of contexts. Optimality conditions for such problems have been derived by several authors while a number of computational methods have been proposed for their solution (the reader is referred to [1] for:a fairly compl...
متن کاملStochastic Successive Convex Approximation for Non-Convex Constrained Stochastic Optimization
This paper proposes a constrained stochastic successive convex approximation (CSSCA) algorithm to find a stationary point for a general non-convex stochastic optimization problem, whose objective and constraint functions are nonconvex and involve expectations over random states. The existing methods for non-convex stochastic optimization, such as the stochastic (average) gradient and stochastic...
متن کاملPolyhedral approximation in mixed-integer convex optimization
Generalizing both mixed-integer linear optimization and convex optimization, mixed-integer convex optimization possesses broad modeling power but has seen relatively few advances in general-purpose solvers in recent years. In this paper, we intend to provide a broadly accessible introduction to our recent work in developing algorithms and software for this problem class. Our approach is based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2020
ISSN: 1064-8275,1095-7197
DOI: 10.1137/19m130128x